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Electrons in a periodic potential
How electrons move in a periodic potential, like that of a semiconductor?

A semiconductor, like Si, consists of a regular array of atoms arranged in 
a crystal lattice. An essential property of a crystal is that it has 
translational invariance.  This means that if we picked up the crystal and 
moved it by one lattice constant, it would look exactly the same as 
before we moved it.  We can express this property mathematically,

U (x+ a) = U (x)

where a is the lattice constant of a one-dimensional lattice.

If the potential is invariant under a translation, then the physical 
properties of any wave function that is a solution to the the Schroedinger 
equation must share the same properties.  In particular, the probability 
density must be invariant: 

ψ� (x + a)ψ (x + a) = ψ� (x)ψ (x)

P (x + a) = P (x)
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The invariance of the probability density implies that the wave functions 
be of the general form

 (x+ a) = exp (i�) (x)

where is γ some constant.  We can re-write γ as ka, where a is the 
lattice constant and k has the form of a wave number.

 (x+ a) = exp (ika) (x)

This is known as Bloch’s theorem.  (This can be proven formally.)

The Bloch theorem can be put into an alternative form by defining a 
Bloch lattice function, uk(x), such that 

 (x) = exp (ikx)uk (x)

The Bloch lattice functions are periodic with lattice constant a, uk(x+a)= 
uk(x).  You can see that this form of the wave function also satisfies the 
invariance requirement for the probability density.
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One-dimensional crystal (Kronig-Penney problem)
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A+B = C +D

Using connection rules at x = 0:

i�A� i�B = ↵C � ↵D

This give us two equations in four unknowns.  To get more relationship, 
we make use of Bloch’s theorem, which says that in a periodic potential

 (x+ a) = exp (ika) (x)

Applying this at x = LB and x = –Lw (which differ by one lattice constant)

 2 (LB) = eika 1 (�LW )

Ce↵LB +De�↵LB = eika
�
Ae�i�LW +Bei�LW

�



EE 439 periodic potential – 5

Now we have three equations in the three unknowns.  To get a fourth 
relationship, we note that the Bloch relationship should also apply to 
the derivative of the wave function. 
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This give us four equations in the four unknown coefficients.  
Writing these in matrix form:
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We see that the four equations form a homogeneous set.  The only way 
in which a unique solution can be obtained is if the determinant of the 
matrix is zero, a process that leads to a characteristic equation that can 
be solved to find the relationship between the crystal wave number k 
and the energy of the electron.  Generally, this information is of more 
value than the form of the actual wave functions.

Grunting through algebra needed to compute the determinant and 
set it to zero leads to the characteristic equation

Everything on the left depends on energy (through α and β).  The 
right side depends on k - crystal wave number.  This is, in a sense, 
and E-k relationship – albeit an awkward one.

�2 � ⇥2

2�⇥
sinh�LB sin⇥LW � cosh�LB cos⇥LW = cos ka
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Below is a plot of the LHS versus E for an electron in a periodic potential 
with Uo = 2 eV, Lw = 0.9 nm and LB = 0.1 (a = 1 nm).
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In looking at the plot, we see that |f| > 1 in some regions.  This means 
that there are ranges of k where there are no solutions!

So we have bands of regions of where there are solutions and bands 
where there are no solutions (forbidden bands).  This is the origin of the 
energy bands that show up in crystal structures.

One way to visualize this is to make a plot of E vs. k, which can be 
compared to the free-electron case.

E =
~2�2

2m

To make the E-k diagram, you might imagine picking a value of k and 
then computing the corresponding value of E using the characteristics 
equation. However, it works better to go the other way: go through the 
various values of E and then compute the corresponding k.

k = ±1

a
arccos [f (E)]
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Below is a plot of E versus k for an electron in a periodic potential with 
Uo = 2 eV, Lw = 0.9 nm and LB = 0.1 (a = 1 nm).


