
EE 285 Arduino – 1

At the end of the previous lecture slides, we loaded and ran the blink
program. When the program is running, the built-in LED blinks on and
off — on for one second and off for one second. It is very simple, but it
consists of functions that are not familiar: pinMode, digitalWrite and
delay. However, it is not hard to guess the purpose of these functions.
We will look at them in more detail.

Blink

EE 285 Arduino – 2

Arduino program commands
The official Arduino web site (arduino.cc) has tons of information about
using Arduinos. In addition, there are a seemingly infinite number of other
web sites with all manner of Arduino-related content. Be sure to explore.

For writing programs, a good place to start is the language reference page of
the Arduino web site: https://www.arduino.cc/en/Reference/HomePage.
Many of items listed there should be familiar to us:

• if…else conditionals
• for and while loops
• basic syntax and punctuation
• arithmetic, comparison, and Boolean operators
• standard variable types (int, char, long, double, string, etc.)
• math functions (sin, cos, sqrt, abs, etc.)

On the right of the page are functions that are less familiar. These include
the commands that set up and control the operation of the input and output
pins. There are also some functions that are related to timing. These are the
functions that are essential to using microcontrollers.

http://arduino.cc
https://www.arduino.cc/en/Reference/HomePage

EE 285 Arduino – 3

Blink

Let’s start by looking at the two functions in the program that control
the blinking:

 pinMode() and digitalWrite().

EE 285 Arduino – 4

pinMode()

The built-in LED is hard-wired to pin 13. (We could replace LED_BUILTIN
with the literal 13 and the program would function identically. Try it.) But
let’s face it — that is not a very exciting LED.

We might want to connect a brighter LED and make it blink. We can
change to a different pin and connect our own LED to glitz things up a bit.
To use a different pin, we must modify the pinMode() statement.

First, note that pins 0 thru 13 are the digital connections. We can use any
of those. Let’s use pin 6. We could just plug the literal number “6” into
the pinMode function, but a bit of abstraction is usually a good idea. So
define an integer constant RED_LED_PIN and assign it the number 6.

The pinMode() function takes two values, the pin number (as we just
defined) and a value that sets how the pin will work. Digital pins can
either be outputs or inputs. If it is an output, the voltage on the pin will be
set to either HIGH (meaning 5 V) or LOW (meaning 0 V). If the pin is set to
be a input, it will read the voltage that is on the pin, and return LOW if the
voltage on the pin is low (< 2.5 V) and return HIGH if the voltage on the
pin is hight (> 2.5 V). (We will look at using digital pins as inputs later.)

EE 285 Arduino – 5

digitalWrite()

Once a pin has been defined as digital output, the output value (0 V or 5
V) can be set with the digitalWrite() function.

digitalWrite() takes two values as parameters. The first is the number of
the particular pin and the second is output level, high or low. The Arduino
language provides the keywords, HIGH and LOW that can be used in the
function. The numbers 1 and 0 would work just as well.

For example, the function call

 digitalWrite(9, HIGH);

sets the output voltage on pin 9 to the high value (5 V).

It is quite easy.

For further details about pinMode() and digitalWrite() check the
Language Reference.

EE 285 Arduino – 6

light-emitting diodes (LEDs)
A light-emitting diode is similar to a
regular rectifying diode except that
it gives off light when a forward
current is passing through it. LEDs
come in a wide variety of colors.
Red, green, yellow, and blue are
very common, but other colors,
including infrared and ultraviolet are
available.

Using an LED is very simple, but there are a couple of precautions.
First, you must always have a resistor in series with it. Without the
resistor, you run the risk of having the diode current become too high,
causing the diode to burn out. The value of the resistor is not critical —
anything between 100 Ω and 1 kΩ is probably OK, although lower
resistance values will give a brighter output.

Secondly, the diode passes current in only one direction — it is not like
a resistor. It must be connected with the right polarity. If you install it
backwards, it will never pass current and so will never lights up.

EE 285 Arduino – 7

id +

–

vd

gnd

Rlimit
Vpin = 5 V light!

iLED > 0

gnd

Rlimit
Vpin = 0 V

darkiLED = 0

gnd

Rlimit
Vpin oops!

Backwards
always dark

iLED = 0

The current through the LED is

� 5 V� 1 V
Rlimit

iD =
Vout � vD
Rlimit

EE 285 Arduino – 8

What value for the current-limiting resistor?

From the equation, we see that the LED current is inversely related to the resistance
— the current goes up as the resistance is reduced. A, smaller resistor will lead to
a brighter LED output.

However, the digital outputs have limited current sourcing / sinking capability.
Referring to the Arduino pin current limitations web page

 http://playground.arduino.cc/Main/ArduinoPinCurrentLimitations

we note that the maximum current that can flow in or out of a digital pin is 40 mA.
However, this is the limit where damage might occur. Therefore, a recommended
safe limit is 20 mA. From the diode current equation, this would correspond to a
limiting resistance value of about 200 Ω. Since 220-Ω resistors are a standard
value, we will use that as a our typical diode current limiting resistance value —
giving an LED current of about 18 mA.

The web page also gives a maximum value of for the total Arduino current of 200
mA. We should be aware of that limit when using multiple devices on the digital
pins.

Finally, in battery-powered applications, conserving energy may be more important
than LED brightness. In those cases, we might opt for larger resistance (lower
currents) to extend battery life.

http://playground.arduino.cc/Main/ArduinoPinCurrentLimitations

EE 285 Arduino – 9

Blink one red LED.

(To make these diagrams: http://fritzing.org/home/)

http://fritzing.org/home/

EE 285 Arduino – 10

The high output is not
exactly 5 V, but it is
probably “high
enough”. This
amount of variation is
typical.

The low output is
pretty close to zero,
indeed.

EE 285 Arduino – 11

Blink two LEDs — alternating red and green.

